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Abstract

Long-term measurements of particle number size distribution (PNSD) produce a very
large number of observations and their analysis requires an efficient approach in order
to produce results in the least possible time and with maximum accuracy. Clustering
techniques are a family of sophisticated methods which have been recently employed5

to analyse PNSD data, however, very little information is available comparing the per-
formance of different clustering techniques on PNSD data. This study aims to apply
several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in
order to identify and apply the optimum technique to PNSD data measured at 25 sites
across Brisbane, Australia. A new method, based on the Generalised Additive Model10

(GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD
data and the temporal weight of each cluster was also estimated using the GAM. In
addition, each cluster was associated with its possible source based on the results
of this parameterisation, together with the characteristics of each cluster. The perfor-
mances of four clustering techniques were compared using the Dunn index and silhou-15

ette width validation values and the K-means technique was found to have the highest
performance, with five clusters being the optimum. Therefore, five clusters were found
within the data using the K-means technique. The diurnal occurrence of each cluster
was used together with other air quality parameters, temporal trends and the physical
properties of each cluster, in order to attribute each cluster to its source and origin. The20

five clusters were attributed to three major sources and origins, including regional back-
ground particles, photochemically induced nucleated particles and vehicle generated
particles. Overall, clustering was found to be an effective technique for attributing each
particle size spectra to its source and the GAM was suitable to parameterise the PNSD
data. These two techniques can help researchers immensely in analysing PNSD data25

for characterisation and source apportionment purposes.

15258

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/15257/2014/acpd-14-15257-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/15257/2014/acpd-14-15257-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 15257–15281, 2014

Cluster analysis of
atmospheric particle

size data for the
purpose of source

apportionment

F. Salimi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 Introduction

Atmospheric aerosols affect climate, air quality and subsequently human health
(Stevens and Feingold, 2009; Pope III and Dockery, 2006; Lohmann and Feichter,
2005). Despite their small contribution to particle volume and mass, ultrafine particles
(particles with diameter < 100 nm) make a significant contribution to particle number5

concentration (PNC) (Morawska et al., 1998; Harrison and Yin, 2000) and toxicolog-
ical studies show evidence of their adverse effects on human health (WHO, 2006).
Therefore, measurements of the chemical and physical properties of aerosol particles
are crucial in order to understand their effects on climate and human health. One of
the most important properties of particles is their size distribution, which helps in un-10

derstanding aerosol dynamics, as well as determining their sources (Charron et al.,
2008; Harrison et al., 2011). Long-term particle number size distribution (PNSD) mea-
surements have been conducted in a number of different environments and the mea-
sured size range can extend from less than 10 nm up to more than 10 µm. In addition,
these long-term measurements generally result in a large number of observations and15

analysing such a massive data set often requires sophisticated techniques. The clus-
tering technique has recently been used to divide particle size data into groups with
similar characteristics and then relate each group to its sources and/or to investigate
aerosol particle formation and evolution (Beddows et al., 2009; Dall’Osto et al., 2012;
Wegner et al., 2012; Tunved et al., 2004; Charron et al., 2007; Costabile et al., 2009).20

Several clustering algorithms currently exist, which makes the selection of an appro-
priate clustering technique a daunting task. Determining the most appropriate number
of clusters can be an additional challenge for researchers. Clusters should ideally be
compact, well-separated and scientifically relevant. Beddows et al. (2009) assessed
the performance of four clustering techniques (Fuzzy, K-means, K-median and model25

based clustering) on PNSD data using different validation indices, particularly the Dunn
index, and found the K-means technique capable of finding clusters with smallest size,
furthest separation and highest degree of inner cluster similarity compared to others.
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Throughout their work, four techniques were evaluated while several other methods
(e.g. Partitioning around Medoids (PAM), Clustering of Large Applications (CLARA),
and Self Organizing Map (SOM), and Affinity Propagation (AP)) are available which
their performance on PNSD data has not been assessed so far. Therefore, these tech-
niques were selected to be compared with K-means using two validation measures.5

K-means is an iterative algorithm minimising the within cluster sum of squares to find
a given number of clusters (Hartigan and Wong, 1979). PAM is an iterative algorithm
similar to K-means which constructs clusters around a set of representative objects
by assigning each data to the nearest representative object using sum of pair wise
dissimilarities (Kaufman and Rousseeuw, 2009). CLARA performs PAM on a number10

of subgroups of data, allowing faster performance for a large number of observations
(Kaufman and Rousseeuw, 2009). SOM is a neural networks based method, with the
ability to map high dimensional data to two dimensions and has been widely used in
data mining researches (Kohonen, 2001). The AP algorithm is a relatively new cluster-
ing technique which has been employed in different fields since its introduction in 2007.15

AP considers all data as potential exemplars and finds the best set of exemplars and
corresponding clusters by exchanging messages between the data points (Frey and
Dueck, 2007).

In a recent study, three years of PNSD data were clustered using the K-means tech-
nique to produce seven clusters. Those clusters were found to form three main groups,20

anthropogenic (69 %), maritime (29 %) and nucleation (2 %), which characterised the
whole data set (Wegner et al., 2012). In another study, Dall’Osto et al. found nine
clusters within the PNSD data collected over a one year period in an urban area and
found four typical PNSD groups using diurnal variation, directional and pollution asso-
ciation (Dall’Osto et al., 2012). The authors called those groups traffic, dilution, sum-25

mer background and regional pollution, which included 69, 15, 4 and 12 % of the total
data respectively. In the above and all other previous studies, PNSD data were aver-
aged to decrease the number of data and consequently, reduce computational cost and
complexity. However, averaging can encumber the transient characterisation of PNSD
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data and the larger the averaging interval, the more transient characteristics will be
lost.

Parameterisation of PNSD data in terms of a mixture of few log-Normal compo-
nents is common and beneficial, particularly for data averaged over a longer interval.
Multi-log-Normal function with predefined number of peaks where the means of each5

log-Normal distribution are constrained to vary around some initial estimates in the nu-
cleation, Aitken, accumulation and coarse modes have been used in literature (Hussein
et al., 2004, 2005; Heintzenberg et al., 2011; Shen et al., 2011). However, not all of the
measured particle size data are able to be expressed in this way and this imposing
a predefined number of separated peaks may not accurately represent all of the vari-10

ation in the collected data. In addition, this method can result in losing the transient
trends if applied to each single particle size spectra.

This study aimed to identify the optimum clustering technique and number of clus-
ters by comparing the performance of three clustering techniques (i.e. PAM, CLARA,
and SOM) with the K-means technique for several numbers of clusters and to asso-15

ciate each cluster with its possible sources using the cluster characteristics, PNSD
parameterisation results, diurnal variation, temporal variation and several air quality
parameters.

2 Materials and methods

2.1 Background20

This study was performed within the framework of the Ultrafine Particles from Traffic
Emissions and Children’s Health (UPTECH) project, which aimed to determine the
effects of exposure to traffic related ultrafine particles (UFPs) on the health of primary
school-aged children. Air quality measurements were conducted for two consecutive
weeks at each of the 25 randomly selected state primary schools across the Brisbane25

Metropolitan Area, in Australia, during the period October 2010 to August 2012. Further
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details regarding the UPTECH project can be found in (Salimi et al., 2013) and the
study design is available online (UPTECH).

2.2 Instrumentation, quality assurance, and data processing

PNSD within the size range 9–414 nm was measured every 5 min using a TSI Scanning
Mobility Particle Sizer (SMPS). The SMPS system included a TSI 3071 Differential5

Mobility Analyser (DMA) connected to a TSI 3782 water-based Condensation Particle
Counter (CPC). A combination of a diaphragm pump and a critical orifice was used
to supply a sheathe flow of 6.4 lpm. A zero particle filter and silica gel dryer were
used to supply a dry, particle free air stream. PNC was measured using a TSI 3781
water-based CPC, particle mass concentration (PM2.5, and PM10) measurements were10

conducted using a TSI DustTrak, solar radiation and other meteorological parameters
were measured by a Monitor Sensors weather station, and EcoTech gas analysers
measured gaseous emission (i.e. CO, NOx and SO2) concentrations. These data were
averaged according to five minute intervals prior to data analysis.

The sheathe and aerosol flow rate of the SMPS system was checked three times15

a week using a bubble flow meter. A zero check of the system was done at the start
of the measurements at each school using a high efficiency particle (HEPA) filter con-
nected to the inlet of the system. Size accuracy of the SMPS was calibrated using
monodisperse polystyrene latex (PSL) particles with a nominal diameter of 100 nm.
Size accuracy calibrations were conducted five times throughout the whole measure-20

ment campaign and all instruments passed the test with a maximum error of 3.5 % from
the nominal diameter, as recommended by Wiedensohler et al. (2012). Particle losses
inside the tube were corrected using the formula derived for the laminar flow regime
(Hinds, 1999). Equivalent tube length was used to correct for particle loss inside the
bipolar charger and DMA (Karlsson and Martinsson, 2003; Covert et al., 1997). On-site25

calibration checks (span and zero) of the gas analysers were conducted on the sec-
ond day of the two week measurement campaigns at each school when the analysers
reached the stable running conditions. The DustTrak zero check was performed every
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second day and calibrated if it was not showing zero within the uncertainty of the in-
strument. Information regarding the quality assurance and data processing procedures
for the CPC can be found in (Salimi et al., 2013).

2.3 Clustering particle number size distribution data

Principal Component Analysis (PCA) was performed on the whole data set, in order5

to reduce its high dimensionality and remove the correlation between features, so as
to increase the performance of the clustering. Ideally, clusters should minimise intra-
cluster variation (compactness) and maximise the distance between clusters (separa-
tion) (Brock et al., 2008; Handl et al., 2005), resulting in small, homogenous clusters
which are clearly separated from each other. Validation measures reflecting the com-10

pactness and separation of the clusters were used to find the optimal method and
number of clusters using the “clValid” package in R (Brock et al., 2008; R Development
Core Team, 2010). As the number of clusters increases, improving compactness, the
separation decreases due to multiple clusters being created which could be described
by a single cluster (consider the extreme case of every observation belonging to its15

own cluster). Combining compactness and separation into a single measure is an ef-
fective way to address this issue. The Dunn index (Dunn, 1974) and silhouette width
(Rousseeuw, 1987) are scores resulting from nonlinear combination of compactness
and separation. Therefore, those scores were chosen in order to compare the perfor-
mance of different clustering techniques and to find the optimum number of clusters.20

The maximum vector length allowed by R is “231-1”, therefore, the Dunn index can
only be calculated for a maximum of 46 340 observations. To address this issue, half of
the observations were randomly selected and their cluster validity values calculated by
applying PAM, CLARA, SOM and K-means techniques using 2 to 20 clusters. Then va-
lidity values for the other half of observations were calculated. This procedure allowed25

us to evaluate the whole set of observations considering the vector size limitation.
The AP clustering technique was initially selected as a candidate, in addition to the

aforementioned techniques. The AP technique was implemented using “APcluster” R
15263
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package (Bodenhofer et al., 2011) and was computationally expensive but ultimately
unsuccessful at clustering our huge dataset effectively. Based on our experience with
this technique and the recommendations of its developers, AP is not recommended
for finding a small number of clusters in a large dataset, but it is more appropriate for
finding a large number of relatively small clusters (FAQ).5

2.4 Non-parametric estimation of particle number size distribution temporal
trends

In this paper, a new approach was developed to parameterise the PNSD data by finding
the local peaks and the normalised concentration at each peak. In order to find the real
local peaks, the noisy trend of PNSD data should be firstly smoothed. To achieve this,10

we used the Generalised Additive Model (GAM), with a basis of penalised B-splines
(Wood, 2003; Eilers and Marx, 1996), which allows for the flexible estimation of non-
linear effects without assuming, a priori, the functional form of the non-linearity (Wood,
2003). In contrast with the multi lognormal fitting method, this approach keeps all the
local peaks while smoothing the noisy data. The fitted function was then used to find15

the local peaks, which were defined to be the local maxima in a neighbourhood of
five PNSD bins on each side (Fig. 1). The bi-variate kernel density estimate, using the
Gaussian kernel, was computed to visualise the distribution of the peaks of the PNSD
data for each cluster (Wand, 1994).

Understanding the temporal trend of clusters provides further information about the20

nature and source of each cluster. GAMs allows for a flexible approach to investigating
these temporal trends. Therefore, the GAM, with a basis of B-spline, was employed to
calculate the temporal trend of each cluster. The resulting fitted smooth functions, and
their 95 % confidence intervals, indicate the temporal variation of each cluster.
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3 Results and discussion

3.1 Particle number size distribution

Around 82 000 SMPS measurements with 5 min intervals were conducted during the
whole UPTECH project, which comprised about 285 days of measurements. All of the
previous long-term studies averaged the data to reduce the complexity and calculation5

costs, however, averaging can conceal the transient peaks and troughs in PNSD data
(Beddows et al., 2009). Therefore, we decided not to average the measured PNSD
data and to use the high performance computers for handling such a large size data
instead.

3.2 Optimum clustering technique and number of clusters10

Figure 2 illustrates the performance of each clustering technique for two randomly se-
lected data. Horizontal and vertical axis show the number of clusters and validation
value (Dunn index and silhouette value) respectively. K-means produced the highest
Dunn index and silhouette width values for all of the number of clusters, for both sets of
randomly selected data, while the rest of techniques showed the same level of perfor-15

mance (Fig. 2). This indicates that the K-means technique was able to produce more
compact clusters that were well separated from each other. The other techniques re-
sulted in almost the same Dunn index value, however SOM resulted in better silhouette
width values, followed by PAM and then CLARA. The performance of the K-means
technique was significantly higher than the rest of the techniques and was therefore20

selected as the preferred technique.
Cluster schemes with 2–8 and 10 clusters had the highest silhouette width values

in the first and second set of randomly selected data, respectively. Five clusters had
the highest Dunn index value for the first set of data and it resulted in a high value in
the second set as well. However, 9–10 clusters resulted in a higher Dunn index value25

in the second set of data. As much as possible, clustering with the optimum number

15265

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/15257/2014/acpd-14-15257-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/15257/2014/acpd-14-15257-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 15257–15281, 2014

Cluster analysis of
atmospheric particle

size data for the
purpose of source

apportionment

F. Salimi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

of clusters should have the highest validation value, while still having an appropriate
number of clusters for distinguishing between different sources and processes (Weg-
ner et al., 2012; Beddows et al., 2009). Therefore, five was selected as the optimum
number of clusters, as it had a high validation value, as well as scientifically relevant
number of clusters to relate each cluster to a source and to find the processes related5

to each cluster.

3.3 Clustering PNSD data

The K-means clustering technique was applied to all PNSD data in order to find five
clusters. Figure 3 shows the normalised number spectra and 95 % confidence interval
associated with each cluster, together with the diurnal variation of their occurrence and10

their association with solar radiation intensity, particle mass concentration, PNC and
gaseous pollutants concentrations.

Local peaks of each single PNSD spectra were found using the technique described
in Sect. 2.4. Plotting the normalized concentration of the peaks vs. their diameter is
useful in order to determine the frequency of peaks and their diameter for each clus-15

ter. However, with too many data, points are over-plotted which makes it impossible to
distinguish the underlying trends and relationships. Therefore, Bi-kernel density esti-
mation, which is a very effective technique to address this issue, was used to visualise
the distribution of peaks in PNSD for each cluster (Fig. 4). Characteristics of each clus-
ter and the associated sources are explained in the following sections, based on Figs. 120

and 2.
Cluster 1: this cluster included 4.5 % of the total measured particle size spectra with

a mode at the SMPS lowest size detection limit (9 nm). The diurnal pattern of occur-
rence showed nocturnal minima with a peak at midday. Cluster 1 was associated with
the highest solar intensity and lowest PM2.5 among all clusters, and it was also asso-25

ciated with high PNC and low CO and NOx. Local peaks predominantly occurred at
diameters less than 30 nm, with the highest density and normalised concentration at
9 nm. This clearly shows the dominance of newly formed particles which have grown in
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size and reached the instrument’s size detection limit. The strength of the local peaks
was the highest among all clusters, indicating the dominance of the smallest particles
(Table 1).

The abovementioned observations indicate that this cluster was attributed to
photochemically-induced nucleated particles in the ambient air. New particles mainly5

formed during the middle of the day and grew to reach the instrument’s size detection
limit. The same type of particles were observed in Barcelona for 4 % of the observa-
tions (Dall’Osto et al., 2012). These types of particles were not observed in London,
which could be due to long time averaging of the data and/or different climatological
conditions of the monitored environment in that study (Beddows et al., 2009).10

Cluster 2: this cluster included 14.1 % of the total PNSD data and showed a mode for
particles with a diameter less than 20 nm. The diurnal pattern of occurrence for Clus-
ter 2 peaked strongly at two hours after midday (14:00 LT), with a nocturnal minimum,
which was in agreement with its association with high solar radiation intensity. Its diur-
nal pattern of occurrence and association with a low concentration of traffic generated15

primary pollutants (NOx and CO) indicated that it had non-traffic related sources. This
cluster was also associated with high PNC. Local peaks were mainly present at diam-
eters less than 20 nm, with the highest density occurring at a normalized concentration
around 0.03. Local peaks present at diameters larger than 30 nm were lower and cor-
responded to normalized concentrations of less than 0.01. This cluster was attributed20

mainly to aged, photochemically-induced nucleated particles in the ambient air. Minor
peaks at diameters larger than 30 nm revealed the contribution of vehicle generated
particles to this cluster (Morawska et al., 2008). However, their contribution to the total
PNC was minimal (Table 1).

Clusters 1 and 2 were both attributed to the same source of particles, but they were25

distinguished as relatively fresh and aged, respectively. Nucleated particles initially
grew and reached the instrument detection size limit in Cluster 1, before growing fur-
ther and gradually shifting to Cluster 2 after about two hours. Nucleated particles grew
in size by condensation and coagulation, and as they aged their number concentration
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decreased and their size increased. This illustrates why Cluster 1 had higher PNC but
lower PM2.5 compared to Cluster 2.

The fraction of PNSD data related to nucleated particles in this study was higher than
in another study in the same environment, which used the classic approach to find the
banana shaped new particle formation events (Cheung et al., 2011). This shows that5

the actual occurrence of new particle formation events is much higher than what is
generally found by classic approaches, because in most particle formation events, the
newly formed particles would be scavenged by the pre-existing particles as a result of
coagulation, before they grew by means of condensation. However, this does not mean
that the nucleation events would not occur and that the particles resulting from them10

would not be present in the air.
Cluster 3: this cluster included 31.6 % of the total measured data, with a mode at

20 nm and a minor peak at the smallest instrument size limit (≈ 9 nm), showing a strong
association with morning and afternoon rush hour traffic (Salimi et al., 2013). This clus-
ter was associated with low solar radiation and high vehicle generated primary pollu-15

tants, including CO and NOx, and the particle number size modes were in the range of
vehicle generated primary particles and nucleated particles during the exhaust emis-
sions dilution (Casati et al., 2007; Ntziachristos et al., 2007; Janhäll et al., 2004). Local
peaks were mainly present at diameters less than 30 nm, particularly at the lowest
detection size limit of the instrument. The normalized concentration corresponding to20

peaks were highest at the smallest particle size. These observations suggest that this
cluster was attributed to vehicle generated particles, including primary particles (having
a diameter of around 40 nm) and particularly secondary particles formed in the vehicle
exhaust (having a diameter of around 9 nm) (Table 1). Similar types of particles were
observed in the literature (Dall’Osto et al., 2012; Beddows et al., 2009).25

Cluster 4: this cluster included 22.6 % of the total data, with a mode at 60 nm. The
diurnal pattern of occurrence showed nocturnal maxima, with a minimum during the
midday and early afternoon hours, and it was associated with the highest PM2.5 among
all clusters as well as with high NOx and CO. Local peaks were present at diameters
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smaller than 20 nm and between 50–70 nm. The normalised concentration correspond-
ing to either of these diameter ranges had a similar magnitude. These findings sug-
gest that Cluster 4 was attributed mainly to regional background aerosols. However,
a source of small particles and gaseous emissions is also present in this cluster (Ta-
ble 1).5

Cluster 5: this cluster included 27.2 % of the total PNSD data, with a mode at 40 nm.
The diurnal pattern of occurrence followed almost the same trend as Cluster 4, with
a minimum during the early afternoon and a peak during the night-time. The local
peaks’ density was almost evenly distributed through the whole range of diameters,
with smaller particles having more peaks particularly for diameters less than 20 nm.10

However, normalized concentrations corresponding to each local peak were highest at
diameters between 30–60 nm, showing the dominance of particles at this size range.
The observations mentioned above suggest that, like Cluster 4, this cluster was at-
tributed to regional background aerosols (Table 1).

3.4 Temporal trend of clusters15

A non-parametric regression model was fitted to the daily occurrence fraction of each
cluster, in order to determine the temporal trend of each cluster. The regression model
quantified the presence of each cluster as the sum of a smooth function for each month
and a trend which included the day, month and year. It should be noted that no data
were collected during the first two months of the year.20

The smooth monthly function for Cluster 1 did not show any significant variation
before November, at which point it increased moderately and peaked during Decem-
ber. Solar radiation intensity is also known to increase during the last two months of
the year in the Southern Hemisphere, which indicates that this may be the driving
force of more atmospheric nucleation events. Cluster 2 showed similar trends of in-25

crease in December in conjunction with the expected increase in solar radiation inten-
sity. The prevalence of Cluster 4 increased and peaked around July–August and then
decreased again. Cluster 4 showed the strongest monthly variation among all clusters.
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As mentioned earlier, this cluster was associated with regional background aerosols
and its monthly variation showed a positive correlation with biomass burning within the
studied region, which mostly took place during July to September. Biomass burning
associated PNSDs peak at 100–200 nm (Friend et al., 2012), however the PNSD of
Cluster 4 peaked at around 60 nm, which was 20 nm higher than the Cluster 5, which5

was also associated with background aerosols. This implies that Cluster 4 included the
mixture of background and biomass burning aerosols, which made the average PNSD
peak shift by 20 nm. The prevalence of Cluster 3 decreased, with a trough during Au-
gust, before increasing again, which is likely to be the result of the biomass burning
which occurred during August and consequently decreased the occurrence of particles10

belonging to Cluster 3. For Cluster 5, a peak was observed during June, which de-
creased to show a trough during August, before peaking again during November. This
trend is the opposite to what was observed for Cluster 4 and given that the peaks for
Cluster 5 were observed when there were less biomass burning events, it was most
likely associated with regional background aerosols, without the influence of biomass15

burning events. The PNSDs which were attributed to regional background aerosols in
this study had different modes compared to the one observed in London (Beddows
et al., 2009), but similar ones to the observations in Barcelona (Dall’Osto et al., 2012).

In summary, the K-means clustering technique was found to be the preferred tech-
nique when compared to SOM, PAM and CLARA. The K-means clustering tech-20

nique categorised the PNSD data into five clusters and each cluster was attributed
to its source and origin. Five clusters were attributed to three major sources and ori-
gins, as follows: (1) regional background particles: Clusters 3 and 5, which included
49.8 % of the total data, were attributed to regional background aerosols with clear
modes at 60 nm and 40 nm, respectively; (2) photochemically induced nucleated par-25

ticles: Clusters 1 and 2, which included 18.6 % of the total data, were attributed to
photochemically-induced nucleated particles; and (3) vehicle generated particles: Clus-
ter 3, which included 31.6 % of the data, was attributed to vehicle generated particles.
A new method was proposed for the parameterisation of particle size spectra, based on
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the GAM, which was found to be an effective tool and is recommended to be used for
particle size data. K-means clustering successfully attributed each particle size spectra
to its source and/or origin. However, while this technique could attribute each particle
size spectra to its major contributing source, several sources with different levels of con-
tribution are often responsible for the pattern of each particle size spectra. The structure5

of the contribution of sources can be further investigated using other techniques, such
as Bayesian infinite mixture modelling (Wraith et al., 2011; Kulis and Jordan, 2011),
Bayesian K-means, Bayesian Beta-process clustering (Broderick et al., 2012) and pos-
itive matrix factorisation (Harrison et al., 2011).
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Table 1. Characteristics of Clusters.

Cluster # Occurrence Source/Origin
percentage

1 4.5 % Photochemically-induced nucleated particles (fresh)
2 14.1 % Photochemically-induced nucleated particles (relatively aged)
3 31.6 % Vehicle generated particles (primary and secondary)
4 22.6 % Regional background aerosols + biomass burning
5 27.2 % Regional background aerosols
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 23 

Figure 1: An example of a fitted smooth function (solid line) on PNSD data (circles) and the 24 

identified local peaks (solid circles). 25 

Figure 1. An example of a fitted smooth function (solid line) on PNSD data (circles) and the
identified local peaks (solid circles).
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 1 

Figure 2: Dunn index and Silhouette width for Kmeans, SOM, PAM, and CLARA clustering 2 

techniques for different cluster numbers. 3 

Figure 2. Dunn index and silhouette width for K-means, SOM, PAM, and CLARA clustering
techniques for different cluster numbers.
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 1 

Figure 3. Clustering results using SMPS data. Graphs on the left show the particle size distri-
butions with 95 % confidence intervals, the associated graphs on the middle show the diurnal
cycle of the hourly percentage of occurrence for each cluster, and the graphs on right show the
associated solar radiation, PM2.5, PM10, NOx, CO, SO2, total PNC.
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Figure 3: Clustering results using SMPS data. Graphs on the left show the particle size 1 

distributions with 95% confidence intervals, the associated graphs on the middle show the 2 

diurnal cycle of the hourly percentage of occurrence for each cluster, and the graphs on right 3 

show the associated solar radiation, PM2.5,, PM10, NOx, CO, SO2, total PNC.    4 

 5 
Figure 4: Density of peaks in particle number size data at each cluster. 6 Figure 4. Density of peaks in particle number size data at each cluster.
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 1 
Figure 5: Temporal trend of occurrence of each cluster, with their 95% confidence intervals. 2 

 3 
Table 1: Characteristics of Clusters 4 

Cluster # Occurrence percentage Source/Origin 

1 4.5% Photochemically-induced nucleated particles (fresh) 

2 14.1% Photochemically-induced nucleated particles (relatively aged) 

3 31.6% Vehicle generated particles (primary and secondary) 

4 22.6% Regional background aerosols + biomass burning 

5 27.2% Regional background aerosols 

 5 

Figure 5. Temporal trend of occurrence of each cluster, with their 95 % confidence intervals.
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